# Triangle ABC

In a triangle ABC with the side BC of length 2 cm The middle point of AB. Points L and M split the AC side into three equal lines. KLM is an isosceles triangle with a right angle at the point K.

Determine the lengths of the sides AB, AC triangle ABC.

Determine the lengths of the sides AB, AC triangle ABC.

### Correct answer:

**Showing 2 comments:**

Tips to related online calculators

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Squares above sides

Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm^{2}. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calc - Right isosceles triangle

Right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse dividing it into 2 equal segments. The length of one segment is 5 cm. What is the area of the triangle? - The right triangle

In the right triangle ABC with a right angle at C, we know the side lengths AC = 9 cm and BC = 7 cm. Calculate the length of the remaining side of the triangle and the size of all angles. - Isosceles IV

In an isosceles triangle ABC is |AC| = |BC| = 13 and |AB| = 10. Calculate the radius of the inscribed (r) and described (R) circle. - Isosceles - isosceles

It is given a triangle ABC with sides /AB/ = 3 cm /BC/ = 10 cm, and the angle ABC = 120°. Draw all points X such that true that BCX triangle is an isosceles and triangle ABX is isosceles with the base AB. - Equilateral triangle ABC

In the equilateral triangle ABC, K is the center of the AB side, the L point lies on one-third of the BC side near the point C, and the point M lies in the one-third of the side of the AC side closer to the point A. Find what part of the ABC triangle cont - RTriangle 17

The hypotenuse of a right triangle is 17 cm. If you decrease both two legs by 3 cm you will reduce the hypotenuse by 4 cm. Determine the length of this legs. - Triangle ABC

Right triangle ABC with right angle at the C, |BC|=18, |AB|=33. Calculate the height of the triangle h_{AB}to the side AB. - Isosceles triangle 9

Given an isosceles triangle ABC where AB= AC. The perimeter is 64cm, and the altitude is 24cm. Find the area of the isosceles triangle. - Triangle

Calculate the area of the triangle ABC if b = c = 17 cm, R = 19 cm (R is the circumradius). - Rectangular trapezoid

Calculate the content of a rectangular trapezoid with a right angle at the point A and if |AC| = 4 cm, |BC| = 3 cm and the diagonal AC is perpendicular to the side BC. - Right 24

Right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse dividing it into 2 unequal segments. The length of one segment is 5 cm. What is the area of the triangle? Thank you. - Rectangular

Rectangular triangle KLM with right angle at vertex L, angle beta at vertex K and angle alpha at vertex M. Angle at vertex M = 65°, side l = 17.5 cm. Use Pythagorean theorems and trigonometric functions to calculate the lengths of all sides and the angle - Internal angles

The ABCD is an isosceles trapezoid, which holds: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: On its side BC is a K point such that |BK| = 2 |KC|, on its side CD is the point L such that |CL| = 2 |LD|, and on its side DA the point M is such that | DM | = 2 |MA|. Dete - Draw triangle

Construct an isosceles triangle ABC, if AB = 7cm, the size of the angle ABC is 47°, arms | AC | = | BC |. Measure the size of the BC side in mm. - Rhombus

It is given a rhombus of side length a = 19 cm. Touchpoints of inscribed circle divided his sides into sections a_{1}= 5 cm and a_{2}= 14 cm. Calculate the radius r of the circle and the length of the diagonals of the rhombus. - RT sides

Find the sides of a rectangular triangle if legs a + b = 17cm and the radius of the written circle ρ = 2cm.